17 research outputs found

    Long-term Leap Attention, Short-term Periodic Shift for Video Classification

    Full text link
    Video transformer naturally incurs a heavier computation burden than a static vision transformer, as the former processes TT times longer sequence than the latter under the current attention of quadratic complexity (T2N2)(T^2N^2). The existing works treat the temporal axis as a simple extension of spatial axes, focusing on shortening the spatio-temporal sequence by either generic pooling or local windowing without utilizing temporal redundancy. However, videos naturally contain redundant information between neighboring frames; thereby, we could potentially suppress attention on visually similar frames in a dilated manner. Based on this hypothesis, we propose the LAPS, a long-term ``\textbf{\textit{Leap Attention}}'' (LA), short-term ``\textbf{\textit{Periodic Shift}}'' (\textit{P}-Shift) module for video transformers, with (2TN2)(2TN^2) complexity. Specifically, the ``LA'' groups long-term frames into pairs, then refactors each discrete pair via attention. The ``\textit{P}-Shift'' exchanges features between temporal neighbors to confront the loss of short-term dynamics. By replacing a vanilla 2D attention with the LAPS, we could adapt a static transformer into a video one, with zero extra parameters and neglectable computation overhead (\sim2.6\%). Experiments on the standard Kinetics-400 benchmark demonstrate that our LAPS transformer could achieve competitive performances in terms of accuracy, FLOPs, and Params among CNN and transformer SOTAs. We open-source our project in \sloppy \href{https://github.com/VideoNetworks/LAPS-transformer}{\textit{\color{magenta}{https://github.com/VideoNetworks/LAPS-transformer}}} .Comment: Accepted by ACM Multimedia 2022, 10 pages, 4 figure

    Re-Attention Transformer for Weakly Supervised Object Localization

    Full text link
    Weakly supervised object localization is a challenging task which aims to localize objects with coarse annotations such as image categories. Existing deep network approaches are mainly based on class activation map, which focuses on highlighting discriminative local region while ignoring the full object. In addition, the emerging transformer-based techniques constantly put a lot of emphasis on the backdrop that impedes the ability to identify complete objects. To address these issues, we present a re-attention mechanism termed token refinement transformer (TRT) that captures the object-level semantics to guide the localization well. Specifically, TRT introduces a novel module named token priority scoring module (TPSM) to suppress the effects of background noise while focusing on the target object. Then, we incorporate the class activation map as the semantically aware input to restrain the attention map to the target object. Extensive experiments on two benchmarks showcase the superiority of our proposed method against existing methods with image category annotations. Source code is available in \url{https://github.com/su-hui-zz/ReAttentionTransformer}.Comment: 11 pages, 5 figure

    NLPBench: Evaluating Large Language Models on Solving NLP Problems

    Full text link
    Recent developments in large language models (LLMs) have shown promise in enhancing the capabilities of natural language processing (NLP). Despite these successes, there remains a dearth of research dedicated to the NLP problem-solving abilities of LLMs. To fill the gap in this area, we present a unique benchmarking dataset, NLPBench, comprising 378 college-level NLP questions spanning various NLP topics sourced from Yale University's prior final exams. NLPBench includes questions with context, in which multiple sub-questions share the same public information, and diverse question types, including multiple choice, short answer, and math. Our evaluation, centered on LLMs such as GPT-3.5/4, PaLM-2, and LLAMA-2, incorporates advanced prompting strategies like the chain-of-thought (CoT) and tree-of-thought (ToT). Our study reveals that the effectiveness of the advanced prompting strategies can be inconsistent, occasionally damaging LLM performance, especially in smaller models like the LLAMA-2 (13b). Furthermore, our manual assessment illuminated specific shortcomings in LLMs' scientific problem-solving skills, with weaknesses in logical decomposition and reasoning notably affecting results

    Cross-Modality High-Frequency Transformer for MR Image Super-Resolution

    Full text link
    Improving the resolution of magnetic resonance (MR) image data is critical to computer-aided diagnosis and brain function analysis. Higher resolution helps to capture more detailed content, but typically induces to lower signal-to-noise ratio and longer scanning time. To this end, MR image super-resolution has become a widely-interested topic in recent times. Existing works establish extensive deep models with the conventional architectures based on convolutional neural networks (CNN). In this work, to further advance this research field, we make an early effort to build a Transformer-based MR image super-resolution framework, with careful designs on exploring valuable domain prior knowledge. Specifically, we consider two-fold domain priors including the high-frequency structure prior and the inter-modality context prior, and establish a novel Transformer architecture, called Cross-modality high-frequency Transformer (Cohf-T), to introduce such priors into super-resolving the low-resolution (LR) MR images. Comprehensive experiments on two datasets indicate that Cohf-T achieves new state-of-the-art performance

    Masked Collaborative Contrast for Weakly Supervised Semantic Segmentation

    Full text link
    This study introduces an efficacious approach, Masked Collaborative Contrast (MCC), to emphasize semantic regions in weakly supervised semantic segmentation. MCC adroitly incorporates concepts from masked image modeling and contrastive learning to devise Transformer blocks that induce keys to contract towards semantically pertinent regions. Unlike prevalent techniques that directly eradicate patch regions in the input image when generating masks, we scrutinize the neighborhood relations of patch tokens by exploring masks considering keys on the affinity matrix. Moreover, we generate positive and negative samples in contrastive learning by utilizing the masked local output and contrasting it with the global output. Elaborate experiments on commonly employed datasets evidences that the proposed MCC mechanism effectively aligns global and local perspectives within the image, attaining impressive performance. The source code is available at \url{https://github.com/fwu11/MCC}

    Integrating UMLS Knowledge into Large Language Models for Medical Question Answering

    Full text link
    Large language models (LLMs) have demonstrated powerful text generation capabilities, bringing unprecedented innovation to the healthcare field. While LLMs hold immense promise for applications in healthcare, applying them to real clinical scenarios presents significant challenges, as these models may generate content that deviates from established medical facts and even exhibit potential biases. In our research, we develop an augmented LLM framework based on the Unified Medical Language System (UMLS), aiming to better serve the healthcare community. We employ LLaMa2-13b-chat and ChatGPT-3.5 as our benchmark models, and conduct automatic evaluations using the ROUGE Score and BERTScore on 104 questions from the LiveQA test set. Additionally, we establish criteria for physician-evaluation based on four dimensions: Factuality, Completeness, Readability and Relevancy. ChatGPT-3.5 is used for physician evaluation with 20 questions on the LiveQA test set. Multiple resident physicians conducted blind reviews to evaluate the generated content, and the results indicate that this framework effectively enhances the factuality, completeness, and relevance of generated content. Our research demonstrates the effectiveness of using UMLS-augmented LLMs and highlights the potential application value of LLMs in in medical question-answering.Comment: 12 pages, 3 figure

    ViT-Calibrator: Decision Stream Calibration for Vision Transformer

    Full text link
    A surge of interest has emerged in utilizing Transformers in diverse vision tasks owing to its formidable performance. However, existing approaches primarily focus on optimizing internal model architecture designs that often entail significant trial and error with high burdens. In this work, we propose a new paradigm dubbed Decision Stream Calibration that boosts the performance of general Vision Transformers. To achieve this, we shed light on the information propagation mechanism in the learning procedure by exploring the correlation between different tokens and the relevance coefficient of multiple dimensions. Upon further analysis, it was discovered that 1) the final decision is associated with tokens of foreground targets, while token features of foreground target will be transmitted into the next layer as much as possible, and the useless token features of background area will be eliminated gradually in the forward propagation. 2) Each category is solely associated with specific sparse dimensions in the tokens. Based on the discoveries mentioned above, we designed a two-stage calibration scheme, namely ViT-Calibrator, including token propagation calibration stage and dimension propagation calibration stage. Extensive experiments on commonly used datasets show that the proposed approach can achieve promising results. The source codes are given in the supplements.Comment: 14pages, 12 figure

    Propheter: Prophetic Teacher Guided Long-Tailed Distribution Learning

    Full text link
    The problem of deep long-tailed learning, a prevalent challenge in the realm of generic visual recognition, persists in a multitude of real-world applications. To tackle the heavily-skewed dataset issue in long-tailed classification, prior efforts have sought to augment existing deep models with the elaborate class-balancing strategies, such as class rebalancing, data augmentation, and module improvement. Despite the encouraging performance, the limited class knowledge of the tailed classes in the training dataset still bottlenecks the performance of the existing deep models. In this paper, we propose an innovative long-tailed learning paradigm that breaks the bottleneck by guiding the learning of deep networks with external prior knowledge. This is specifically achieved by devising an elaborated ``prophetic'' teacher, termed as ``Propheter'', that aims to learn the potential class distributions. The target long-tailed prediction model is then optimized under the instruction of the well-trained ``Propheter'', such that the distributions of different classes are as distinguishable as possible from each other. Experiments on eight long-tailed benchmarks across three architectures demonstrate that the proposed prophetic paradigm acts as a promising solution to the challenge of limited class knowledge in long-tailed datasets. Our code and model can be found in the supplementary material

    A Survey of Neural Trees

    Full text link
    Neural networks (NNs) and decision trees (DTs) are both popular models of machine learning, yet coming with mutually exclusive advantages and limitations. To bring the best of the two worlds, a variety of approaches are proposed to integrate NNs and DTs explicitly or implicitly. In this survey, these approaches are organized in a school which we term as neural trees (NTs). This survey aims to present a comprehensive review of NTs and attempts to identify how they enhance the model interpretability. We first propose a thorough taxonomy of NTs that expresses the gradual integration and co-evolution of NNs and DTs. Afterward, we analyze NTs in terms of their interpretability and performance, and suggest possible solutions to the remaining challenges. Finally, this survey concludes with a discussion about other considerations like conditional computation and promising directions towards this field. A list of papers reviewed in this survey, along with their corresponding codes, is available at: https://github.com/zju-vipa/awesome-neural-treesComment: 35 pages, 7 figures and 1 tabl
    corecore